Please enable Javascript
āĻŦāĻžāĻĻ āĻĻāĻŋā§Ÿā§‡ āĻĒā§āϰāϧāĻžāύ āĻŦāĻŋāώ⧟āϏ⧂āϚāĻŋāϤ⧇ āϝāĻžāύ

Uber Scaled Solutions for chatbots and customer support

Empowering chatbots and customer support platforms with scalable AI data labeling, app performance testing, and personalization solutions for accuracy, efficiency, and engagement

Why partner with Uber Scaled Solutions?

Uber’s AI-powered data labeling, advanced testing frameworks, and global scalability enable chatbot and customer support companies to deliver accurate, efficient, and personalized solutions. With over 8 years of experience and a global network of specialized teams, Uber helps organizations create reliable, scalable, and engaging customer support experiences.

High-precision data for accurate conversational AI

uLabel’s nuanced tagging enhances chatbot natural language understanding (NLU), enabling accurate, context-aware interactions.

Seamless customer experiences

Comprehensive real-time testing ensures that chatbots perform reliably, even in complex, multi-turn conversations.

Accelerated time to market for chatbot enhancements

Streamlined workflows allow faster deployment of updates, features, and regional adaptations.

Global adaptability

Our localization expertise makes sure chatbots resonate with diverse users, enriching customer satisfaction across geographies.

Operational efficiency and cost savings

Scalable solutions reduce overhead, allowing businesses to allocate resources more effectively.

Enhanced engagement and customer retention

Personalized, accurate, and empathetic chatbot interactions build trust and loyalty, driving long-term success.

How this could apply to you

  • Label datasets for intent recognition, sentiment analysis, and contextual understanding to train chatbots.

    Impact: Improves chatbot accuracy and relevance, enhancing customer satisfaction

  • Analyze user behavior and feedback to enable tailored chatbot interactions and dynamic responses.

    Impact: Increases engagement, retention, and customer loyalty

  • Simulate real-world scenarios to validate chatbot response accuracy and conversational flow.

    Impact: Ensures reliable and consistent performance under diverse conditions

  • Adapt chatbot functionality for language, cultural, and regional differences, ensuring inclusivity and accessibility.

    Impact: Expands reach and improves user satisfaction in global markets​

How we do this with our tools

  • Tags diverse datasets, including text, audio, and customer interactions, to train chatbots on sentiment, intent, and context.

  • Annotates conversational flows, making sure chatbots understand complex queries and respond appropriately.

  • Supports over 100 languages, allowing chatbots to engage users globally with culturally relevant and accurate responses.

  • Ensures that labeled data meets high standards for accuracy, reducing training errors and enhancing chatbot performance.

  • āφāĻŽāĻžāĻĻ⧇āϰ āĻĒāϰāĻŋāϚ⧟

    • āϏāĻ‚āĻ•ā§āώāĻŋāĻĒā§āϤ āĻŦāĻ°ā§āĻŖāύāĻž

      • ā§Ž+ āĻŦāĻ›āϰ⧇āϰ āĻ—āĻ­ā§€āϰ āĻ…āĻ­āĻŋāĻœā§āĻžāϤāĻž

      • ā§Šā§Ļ+ āϏāĻ•ā§āώāĻŽāϤāĻž

      • ā§§ā§Ļā§Ļ+ āĻ­āĻžāώāĻž

      • āϏāĻ˛ā§āϝ⧁āĻļāĻ¨ā§āϏ

        • āĻĄā§‡āϟāĻž āĻ…ā§āϝāĻžāύ⧋āĻŸā§‡āĻļāύ āĻāĻŦāĻ‚ āϞ⧇āĻŦ⧇āϞāĻŋāĻ‚

        • āĻĒāϰ⧀āĻ•ā§āώāĻž

        • āĻ­āĻžāώāĻž āĻāĻŦāĻ‚ āϞ⧋āĻ•āĻžāϞāĻžāχāĻœā§‡āĻļāύ

      • āχāĻ¨ā§āĻĄāĻžāĻ¸ā§āĻŸā§āϰāĻŋ

        • Auto & AV

        • BFSI

        • āĻ•ā§āϝāĻžāϟāĻžāϞāĻ— āĻŦā§āϝāĻŦāĻ¸ā§āĻĨāĻžāĻĒāύāĻž

        • āĻšā§āϝāĻžāϟāĻŦāϟ / āĻ—ā§āϰāĻžāĻšāĻ• āϏāĻšāĻžāϝāĻŧāϤāĻž

        • āĻ—ā§āϰāĻžāĻšāĻ• āĻ…ā§āϝāĻžāĻĒ

        • āχ-āĻ•āĻŽāĻžāĻ°ā§āϏ / āϰāĻŋāĻŸā§‡āχāϞ

        • āĻœā§‡āύāĻžāϰ⧇āϟāĻŋāĻ­ āĻāφāχ (Generative AI)

        • āĻ¸ā§āĻŦāĻžāĻ¸ā§āĻĨā§āϝ / āĻŽā§‡āĻĄāĻŋāϕ⧇āϞ āĻāφāχ

        • āĻ‰ā§ŽāĻĒāĻžāĻĻāύ

        • āĻŽāĻŋāĻĄāĻŋāϝāĻŧāĻž / āĻŦāĻŋāύ⧋āĻĻāύ

        • āϰ⧋āĻŦā§‹āϟāĻŋāĻ•ā§āϏ

        • āϏāĻžāĻŽāĻžāϜāĻŋāĻ• āϝ⧋āĻ—āĻžāϝ⧋āĻ— āĻŽāĻžāĻ§ā§āϝāĻŽ

        • āĻĒā§āϰāϝ⧁āĻ•ā§āϤāĻŋ

    • āĻ…āĻĢāĻžāϰ

      • āĻĄāĻžāϟāĻž āϞ⧇āĻŦ⧇āϞāĻŋāĻ‚

        • āϝ⧁āĻ•ā§āϤāĻŋ

        • āĻŸā§‡āĻ•ā§āϏāϟ āĻāĻŦāĻ‚ āĻ­āĻžāώāĻž

        • āĻ›āĻŦāĻŋ

        • āĻŽāĻŋāĻĄāĻŋāϝāĻŧāĻž

        • āϏāĻžāĻ°ā§āϚ āĻ•āϰ⧁āύ

      • āĻĒāϰ⧀āĻ•ā§āώāĻž

        • E2E āĻ•āĻžāĻ°ā§āϝāĻ•āϰ⧀ āĻĒāϰ⧀āĻ•ā§āώāĻž

        • āĻ­āĻžāώāĻžāĻ—āϤ āĻĒāϰ⧀āĻ•ā§āώāĻž

        • āĻ…ā§āϝāĻžāĻ•ā§āϏ⧇āϏāĻŋāĻŦāĻŋāϞāĻŋāϟāĻŋ āĻāĻŦāĻ‚ āĻ•āĻŽāĻĒā§āϞāĻžā§Ÿā§‡āĻ¨ā§āϏ

          • āĻŽāĻĄā§‡āϞ āĻŽā§‚āĻ˛ā§āϝāĻžāϝāĻŧāύ

          • āĻ…ā§āϝāĻžāĻĒ⧇āϰ āĻĒāĻžāϰāĻĢāϰāĻŽā§āϝāĻžāĻ¨ā§āϏ āĻĒāϰ⧀āĻ•ā§āώāĻž

        • āϞ⧋āĻ•āĻžāϞāĻžāχāĻœā§‡āĻļāύ

          • āĻĒā§āϰ⧋āĻĄāĻžāĻ•ā§āϟ āχāωāφāχ

          • āĻŽāĻžāĻ°ā§āϕ⧇āϟāĻŋāĻ‚

          • āϏāĻšāĻžā§ŸāϤāĻž

          • āφāχāύāĻŋ

      • āĻĒā§āϰāϝ⧁āĻ•ā§āϤāĻŋ

        • uLabel

          • āĻĄā§‡āϟāĻž āϏāĻ‚āĻ•ā§āϰāĻžāĻ¨ā§āϤ āφāĻĒāύāĻžāϰ āϏāĻŽāĻ¸ā§āϤ āĻĒā§āϰāϝāĻŧā§‹āϜāύ⧇ āĻ•āύāĻĢāĻŋāĻ—āĻžāϰāϝ⧋āĻ—ā§āϝ UI āĻĒā§āĻ˛ā§āϝāĻžāϟāĻĢāĻ°ā§āĻŽ

          • uTask

            • āφāĻĒāύāĻžāϰ āϏāĻ•āϞ āĻĒā§āϰāϝāĻŧā§‹āϜāύ⧇ āϏāĻœā§āϜāĻŋāϤ āĻāĻ•āϟāĻŋ āϏāĻŽā§āĻĒā§‚āĻ°ā§āĻŖ āĻ•āύāĻĢāĻŋāĻ—āĻžāϰāϝ⧋āĻ—ā§āϝ, āϰāĻŋāϝāĻŧ⧇āϞ-āϟāĻžāχāĻŽ āĻ“āϝāĻŧāĻžāĻ°ā§āĻ• āĻ…āĻ°ā§āϕ⧇āĻ¸ā§āĻŸā§āϰ⧇āĻļāύ āĻĒā§āĻ˛ā§āϝāĻžāϟāĻĢāĻ°ā§āĻŽ

          • Testlab

            • Uber-āĻāϰ āĻ•āĻžāĻ¸ā§āϟāĻŽ āĻŸā§‡āĻ¸ā§āϟ āĻŽā§āϝāĻžāύ⧇āϜāĻŽā§‡āĻ¨ā§āϟ āĻāĻŦāĻ‚ āĻŸā§‡āĻ¸ā§āϟāĻŋāĻ‚ āĻĒā§āĻ˛ā§āϝāĻžāϟāĻĢāĻ°ā§āĻŽ

          • uTranslate

            • Uber-āĻāϰ āχāύ-āĻšāĻžāωāϏ āĻĒā§āĻ˛ā§āϝāĻžāϟāĻĢāĻ°ā§āĻŽā§‡āϰ āϜāĻ¨ā§āϝāχ āĻ…ā§āϝāĻžāĻĒāϗ⧁āϞāĻŋāϕ⧇ āϏāĻŦāĻžāϰ āĻ•āĻžāϛ⧇, āϏāĻ°ā§āĻŦāĻ¤ā§āϰ āĻ¸ā§āĻĨāĻžāύ⧀āϝāĻŧ āĻŽāύ⧇ āĻšā§Ÿ