Perception and prediction
ATG’s work perceives and understands the dynamic world around a self-driving car through a multi-sensor setup and uses this information to predict possible future states of the world.
Recent ATG R&D publications
DSDNet: Deep Structured self-Driving Network
Wenyuan Zeng, Shenlong Wang, Renjie Liao, Yun Chen, Bin Yang, Raquel Urtasun (ECCV 2020)
Importance of Prior Knowledge in Precise Multimodal Prediction
Sergio Casas*, Cole Gulino*, Simon Suo*, and Raquel Urtasun (IROS 2020, oral)
Implicit Latent Variable Model for Scene-Consistent Motion Forecasting
Sergio Casas, Cole Gulino, Simon Suo, Katie Luo, Renjie Liao, Raquel Urtasun (ECCV 2020)
End-to-end Contextual Perception and Prediction with Interaction Transformer
Lingyun Luke Li, Bin Yang, Ming Liang, Wenyuan Zeng, Mengye Ren, Sean Segal, Raquel Urtasun (ECCV 2020, oral)
Testing the Safety of Self-driving Vehicles by Simulating Perception and Prediction
Kelvin Wong, Qiang Zhang, Ming Liang, Bin Yang, Renjie Liao, Abbas Sadat, Raquel Urtasun (ECCV 2020)
Learning Lane Graph Representations for Motion Forecasting
Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, Raquel Urtasun (ECCV 2020, oral)
RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects
Bin Yang*, Runsheng Guo*, Ming Liang, Sergio Casas, Raquel Urtasun (ECCV 2020)
Perceive, Predict, and Plan: Safe Motion Planning Through Interpretable Semantic Representations
Abbas Sadat*, Sergio Casas*, Mengye Ren, Xinyu Wu, Pranaab Dhawan, Raquel Urtasun (ECCV 2020)
LevelSet R-CNN: A Deep Variational Method for Instance Segmentation
Namdar Homayounfar, Yuwen Xiong, Justin Liang, Wei-Chiu Ma, Raquel Urtasun (ECCV 2020)
Physically Realizable Adversarial Examples for LiDAR Detection
James Tu, Mengye Ren, Siva Manivasagam, Bin Yang, Ming Liang, Richard Du, Frank Cheng, Raquel Urtasun (CVPR 2020)
PolyTransform: Deep Polygon Transformer for Instance Segmentation
Justin Liang, Namdar Homayounfar, Wei-Chiu Ma, Yuwen Xiong, Rui Hu, Raquel Urtasun (CVPR 2020)
PnPNet: End-to-End Perception and Prediction with Tracking in the Loop
Ming Liang*, Bin Yang*, Wenyuan Zeng, Yun Chen, Rui Hu, Sergio Casas, Raquel Urtasun (CVPR 2020)
Discrete Residual Flow for Probabilistic Pedestrian Behavior Prediction
Ajay Jain*, Sergio Casas*, Renjie Liao*, Yuwen Xiong*, Song Feng, Sean Segal, Raquel Urtasun (CoRL 2019)
Identifying Unknown Instances for Autonomous Driving
Kelvin Wong, Shenlong Wang, Mengye Ren, Ming Liang, Raquel Urtasun (CoRL 2019)
DeepPruner: Learning Efficient Stereo Matching via Differentiable PatchMatch
Shivam Duggal, Shenlong Wang, Wei-Chiu Ma, Rui Hu, Raquel Urtasun (ICCV 2019)
Learning Joint 2D-3D Representations for Depth Completion
Yun Chen*, Bin Yang*, Ming Liang, Raquel Urtasun (ICCV 2019)
End-to-End Interpretable Neural Motion Planner
Wenyuan Zeng*, Wenjie Luo*, Simon Suo, Abbas Sadat, Bin Yang, Sergio Casas, Raquel Urtasun (CVPR 2019, oral)
UPSNet: A Unified Panoptic Segmentation Network
Yuwen Xiong*, Renjie Liao*, Hengshuang Zhao*, Rui Hu, Min Bai, Ersin Yumer, Raquel Urtasun (CVPR 2019, oral)
Multi-Task Multi-Sensor Fusion for 3D Object Detection
Ming Liang*, Bin Yang*, Yun Chen, Rui Hu, Raquel Urtasun (CVPR 2019)
Deep Rigid Instance Scene Flow
Wei-Chiu Ma, Shenlong Wang, Rui Hu, Yuwen Xiong, Raquel Urtasun (CVPR 2019)
DeepSignals: Predicting Intent of Drivers Through Visual Signals
Davi Frossard, Eric Kee, Raquel Urtasun (CVPR 2019)
Deep Multi-Sensor Lane Detection
Min Bai*, Gellért Máttyus*, Namdar Homayounfar, Shenlong Wang, Shrinidhi Kowshika Lakshmikanth, Raquel Urtasun (IROS 2018, oral)
HDNET: Exploiting HD Maps for 3D Object Detection
Bin Yang, Ming Liang, Raquel Urtasun (CORL 2018, spotlight)
IntentNet: Learning to Predict Intention from Raw Sensor Data
Sergio Casas, Wenjie Luo, Raquel Urtasun (CORL 2018, spotlight)
Efficient Convolutions for Real-Time Semantic Segmentation of 3D Point Clouds
Chris Zhang, Wenjie Luo, Raquel Urtasun (3DV 2018, spotlight)
Deep Continuous Fusion for Multi-Sensor 3D Object Detection
Ming Liang, Bin Yang, Shenlong Wang, Raquel Urtasun (ECCV 2018)
SBNet: Sparse Blocks Network for Fast Inference
Mengye Ren*, Andrei Pokrovsky*, Bin Yang*, Raquel Urtasun (CVPR 2018, spotlight)
Deep Parametric Continuous Convolutional Neural Networks
Shenlong Wang*, Simon Suo*, Wei-Chiu Ma, Andrei Pokrovsky, Raquel Urtasun (CVPR 2018, spotlight)
PIXOR: Real-Time 3D Object Detection from Point Clouds
Bin Yang, Wenjie Luo, Raquel Urtasun (CVPR 2018)
Fast and Furious: Real Time End-to-End 3D Detection, Tracking and Motion Forecasting with a Single Convolutional Net
Wenjie Luo, Bin Yang, Raquel Urtasun (CVPR 2018, oral)
End-to-End Learning of Multi-Sensor 3D Tracking by Detection
Davi Frossard, Raquel Urtasun (ICRA 2018)
R&D Homepage
公司
查找
城市乘车服务
工作机会(按城市分列)
热门路线
大巴包租服务