Пропустить и перейти к основному содержимому
Uber

Сообщите нам свое местонахождение

Введите название ближайшего города, чтобы мы могли отобразить правильную информацию по вашему региону

2019 PhD Data Scientist Internship - Consumer

Data Science, University в San Francisco, CA

At Uber, we ignite opportunity by setting the world in motion. We take on big problems to help drivers, riders, delivery partners, and eaters get moving in more than 600 cities around the world.

 

We welcome people from all backgrounds who seek the opportunity to help build a future where everyone and everything can move independently. If you have the curiosity, passion, and collaborative spirit, work with us, and let’s move the world forward, together.

About the Role

 

We’re looking for PhD intern candidates to contribute to Consumer data science in Summer 2019 (3 months). We seek candidates with a strong background in economics, machine learning, computer science, or statistics. You will be embedded in a product team such as Rider or Driver Experience, and work closely with the engineers and product managers under the supervision of a data scientist in that team. You’ll be focused on modeling or data-oriented research on a project defined by you and your mentor.

What You’ll Do

  • Work with your mentor closely to scope a project, define the problem, and develop and prototype the solution
  • Work alongside engineers and product managers to understand the business use cases and production feasibility of your work, and collaborate on the experimentation and productionisation of your work
  • Develop creative solutions to product problems using a combination of empirical insights and sophisticated technical methods
  • Communicate with senior management and cross-functional teams

 

Sample Projects

  • Investigate the meaning and impact of trip quality on riders and drivers
  • Build uplift and segmentation models to be used for targeted outreach and re-engagement strategies
  • Build machine learning models for product selection, hotspot location and routing optimization
  • Building matching algorithms to enable transportation solutions in different markets
  • Build OCR models to automate Driver document transcription
  • Build models to optimize our fleets of bikes and scooters

 

What You’ll Need

  • Ph.D. student (anticipated graduation in 2020) majoring in CS, Economics, Statistics, Machine Learning, Operations Research, Physics or other quantitative disciplines
  • Coding proficiency and the ability to develop statistical analysis and prototype models in Python or R
  • Proficiency in SQL
  • Ability to communicate effectively with both technical and business stakeholders

 

About the Team

 

The Consumer Data Science team uses data to improve the ways that Uber’s users engage with our products. Data Scientists on Consumer play a central role in guiding product development and strategy through the discovery of insights from data as well as developing data products to optimize the experience. Internships will be with one of the two major product areas with positions in both San Francisco and Seattle:

  • Driver: Creating a seamless product experience for drivers across the driver journey: matching drivers to cars, onboarding onto our platform, creating a stress-free trip experience, and providing flexible earnings opportunities to engage drivers long term.
  • Rider: Building products that create an awesome experience for people who ride with Uber including core experiences, airports, events, and business.
  • New Mobility: Creating the efficient and clean mobility experiences of tomorrow — bikes, scooters, transit, and mopeds.

Ознакомьтесь с нашим заявлением о конфиденциальности для кандидатов

В Uber мы не просто принимаем что-то новое — мы радуемся ему, поддерживаем его и используем на благо наших сотрудников, продуктов и сообщества. Uber гордится тем, что предоставляет равные возможности работы и поддерживает каждого сотрудника. Мы даем равные возможности для работы всем людям вне зависимости от расы, цвета кожи, социального происхождения, вероисповедания, пола, национальности, сексуальной ориентации, возраста, гражданства, семейного положения, ограниченности возможностей, гендерной принадлежности или статуса ветерана.