Core AI tech
Areas of fundamental machine learning science include sparse and efficient operations for real-time inference, theoretical analysis of the robustness and safety of neural networks, stochastic and non-linear optimization, learning in the presence of noisy biased data, and more.
Recent ATG R&D publications
Hierarchical Verification for Adversarial Robustness
Cong Han Lim, Raquel Urtasun, Ersin Yumer (ICML 2020)
Conditional Entropy Coding for Efficient Video Compression
Jerry Liu, Shenlong Wang, Wei-Chiu Ma, Meet Shah, Rui Hu, Pranaab Dhawan, Raquel Urtasun (ECCV 2020)
Learning Lane Graph Representations for Motion Forecasting
Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, Raquel Urtasun (ECCV 2020, oral)
LevelSet R-CNN: A Deep Variational Method for Instance Segmentation
Namdar Homayounfar, Yuwen Xiong, Justin Liang, Wei-Chiu Ma, Raquel Urtasun (ECCV 2020)
OctSqueeze: Octree-Structured Entropy Model for LiDAR Compression
Lila Huang, Shenlong Wang, Kelvin Wong, Jerry Liu, Raquel Urtasun (CVPR 2020, oral)
DSIC: Deep Stereo Image Compression
Jerry Liu, Shenlong Wang, Raquel Urtasun (ICCV 2019, oral)
Graph HyperNetworks for Neural Architecture Search
Chris Zhang, Mengye Ren, Raquel Urtasun (ICLR 2019)
SBNet: Sparse Blocks Network for Fast Inference
Mengye Ren*, Andrei Pokrovsky*, Bin Yang*, Raquel Urtasun (CVPR 2018, spotlight)
Deep Parametric Continuous Convolutional Neural Networks
Shenlong Wang*, Simon Suo*, Wei-Chiu Ma, Andrei Pokrovsky, Raquel Urtasun (CVPR 2018, spotlight)
Learning to Reweight Examples for Robust Deep Learning
Mengye Ren, Wenyuan Zeng, Bin Yang, Raquel Urtasun (ICML 2018, spotlight)
R&D Homepage
Компанията